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Motivation

Why nonlocal?

Strictly speaking relevant models in Continuum Mechanics, Math
Physics and Biology are of nonlocal nature:

Boltzmann equations in gas dynamics;
Navier-Stokes equations in Fluid Mechanics;
Keller-Segel model for Chemotaxis.

Here, however, we shall deal with other non-local effects, due to
anomalous dispersion and diffusion and memory terms. This leads to
PDE involving nonlocal terms in the form of integrals either in space
or time or both.

In that setting, of course, classical PDE theory fails because of
non-locality. Yet many of the existing techniques can be tuned and
adapted, although this is often a delicate matter because modern
PDE analysis is based on the use of localisation arguments (test and
cut-off functions) that do not apply in a straightforward manner in
the nonlocal context.
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Motivation

Goal

Try to develop a systematic analysis of the control theoretical
consequences of the possible presence of non-local terms in the model.

We do it for the following model cases:

Viscoelasticity

Models involving memory terms

Fractional Laplacian

Lower order space-like nonlocal terms.

Fractional time derivatives

E. Zuazua (FAU - AvH) Control & Nonlocality April 2, 2020 4 / 46



Viscoelasticity

Table of Contents

1 Motivation

2 Viscoelasticity
The model
PDE aspects
Moving control

3 Models involving memory terms
Heat with memory
Waves with memory

4 Fractional wave and Schrödinger equations
The model
Controlability

5 Equations involving space-like lower order terms

6 Fractional time derivatives

7 Perspectives

E. Zuazua (FAU - AvH) Control & Nonlocality April 2, 2020 5 / 46



Viscoelasticity The model

Viscoelasticity

A wave equation with both viscous Kelvin-Voigt damping:

ytt −∆y −∆yt = 1ωh, x ∈ Ω, t ∈ (0,T ), (1)

y = 0, x ∈ ∂Ω, t ∈ (0,T ), (2)

y(x , 0) = y0(x), yt(x , 0) = y1(x) x ∈ Ω. (3)

Here, Ω is a smooth, bounded open set in RN and h = h(x , t) is a control
located in a open subset ω of Ω.

We address the controllability problem:

Given (y0, y1), to find a control h such that the associated solution to
(1)-(3) satisfies

y(T ) = yt(T ) = 0.
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Viscoelasticity The model

Viscoelasticity arises in areas such as biomechanics, power industry or
heavy construction:

Synthetic polymers;

Wood;

Human tissue, cartilage;

Metals at high temperature;

Concrete, bitumen;

...

Viscoelastic materials are those for which the behavior combines liquid-like
and solid-like characteristics. 1

1See H. T. Banks, S. Hu and Z. R. Kenz, A Brief Review of Elasticity and
Viscoelasticity for Solids, Adv. Appl. Math. Mech., 3 (1), (2011), 1-51.
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Viscoelasticity PDE aspects

A geometric obstruction

Standard results on unique continuation do not apply. The principal part
of the operator is ∂t∆.
Then characteristic hyperplanes are of the form t = t0 and x · e = 1.

And the zero sets do not propagate by standard unique continuation
arguments.
This phenomenon was previously observed by S. Micu in the context of the
Benjamin-Bona-Mahoni equation 2 3

In that context the underlying operator is

∂t − ∂3
xxt

but its principal part is the same

∂3
xxt .

2S. Micu, SIAM J. Control Optim., 39(2001), 1677–1696.
3X. Zhang and E. Z. Matematische Annalen, 325 (2003), 543-582.
E. Zuazua (FAU - AvH) Control & Nonlocality April 2, 2020 8 / 46



Viscoelasticity PDE aspects

Viscoelasticity = Waves + Heat

ytt −∆y −∆yt = 0

=

ytt −∆y = 0

+

∂t [yt ]−∆[yt ] = 0

Both equations are controllable. Should then the superposition be
controllable as well?

The delicate role of splitting and alternating directions in the
controllability of PDE:

x ′ + A1x + A2x = Bu
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Viscoelasticity PDE aspects

Viscoelasticity = Heat + ODE

Note that
ytt −∆y −∆yt + yt = (∂t −∆)(∂t + I ).

Then

yt + y = v , (4)

vt −∆v = 1ωh, (5)

v(x , t) = y(x , t) = 0, (x , t) ∈ ∂Ω× (0,T ), (6)

v(x , 0) = y1(x) + y0(x), x ∈ Ω, (7)

y(x , 0) = y0(x), x ∈ Ω. (8)

The question now becomes: Given (y0, z0) to find a control h such that
the associated solution to (4)-(8) satisfies

y(T ) = v(T ) = 0.

The main obstruction is the presence of the ODE governing the dynamics
of y , in which no diffusion, dispersion or propagation effects arise.
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Viscoelasticity PDE aspects

Viscoelasticity = Heat + Memory

Note that

ytt −∆y −∆yt = ∂t [yt −∆y −∆

∫ t

0
y ].

The later, heat with memory, was addressed by Guerrero and Imanuvilov4,
showing that the system is not null controllable.

The spectrum contains a sequence accumulating at λ = 0 which is an
obstruction for any kind of observability inequality to hold. This is
precisely due to the underlying ODE component...

4S. Guerrero, O. Yu. Imanuvilov, Remarks on non controllability of the heat equation
with memory, ESAIM: COCV, 19 (1)(2013), 288–300.
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Viscoelasticity Moving control

The controllability of the system is unclear:

vt −∆v = 1ωh, yt + y = v+0.

But we can consider the system with an added fictitious control:

vt −∆v = 1ωh, yt + y = v + 1ωk

[ytt −∆y −∆yt + yt = 1ωh + (δt −∆)(1ωk)].

Control in two steps:

Use the control h to control v to zero in time T/2.
Then use the control k to control the ODE dynamics in the
time-interval [T/2,T ].

Warning. The second step cannot be fulfilled since the ODE does not
propagate the action of the controller which is confined in ω.

Possible solution: Make the control in the second equation move or,
equivalently, replace the ODE by a transport equation.
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Viscoelasticity Moving control

A successful example of moving support of the control

Ω

0 ≤ t < t1 t2 < t ≤ T

Ω1(t)

X(ω0, t, 0) X(ω0, t, 0) X(ω0, t, 0)

Γ(t)

t1 < t < t2

Γ(t)Γ(t)

Ω2(t) Ω1(t) Ω2(t)

vt −∆v = 1ω(t)h,

yt + y = v + 1ω(t)k . (9)
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Viscoelasticity Moving control

This strategy was introduced and found to be successful in

P. Martin, L. Rosier, P. Rouchon, Null Controllability of the
Structurally Damped Wave Equation with Moving Control, SIAM J.
Control Optim., 51 (1)(2013), 660–684.
L. Rosier, B.-Y. Zhang, Unique continuation property and control for
the Benjamin-Bona-Mahony equation on a periodic domain, J.
Differential Equations 254 (2013), 141-178.

by using Fourier series decomposition.
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Viscoelasticity Moving control

If ω moves, i. e. ω(t), with a velocity field a(t), then by a change of
coordinates, this has the same effect as replacing the ODE by:

yt + a(t) · ∇y = 1ωk.

And it is sufficient that all characteristic lines pass by ω to ensure
controllability or, in other words, that the set ω(t) covers the whole
domain Ω in its motion.

This strategy was proved to be successful in the multi-d context in
F. Chaves, L. Rosier & E. Zuazua, Null controllability of a system of
viscoelasticity with a moving control, Journal de Mathématiques Pures et
Appliquées, 101 (2014) 198-222

The proof employs:

The duality with the observability inequality

Simultaneous Carleman inequalities for heat equations and ODEs with
moving weights.

Under some technical assumptions on the support of the control....
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Viscoelasticity Moving control

Observability of the adjoint system

The adjoint system reads

−pt −∆p = 0, −qt + q = p.

And the challenge is to prove∫
Ω

[|p(x , 0)|2 + |q(x , 0)|2]dx ≤ C

∫ T

0

∫
ω(t)×(0,T )

|q(x , t)|2 dxdt.

This is done employing Carleman inequalities of the form∫
Q
ρ−2[p2 + q2] dx dt ≤ C

∫
ω(t)×(0,T )

ρ−2q2 dx dt,

and the difficulty is to find a weight valid simultaneously for the ODE (or
transport equation) and the heat equation.

The philosophy: Local information on q leads to local information on p by
reading-off the ODE. Local information on p diffuses according to the heat
equation and leads to global estimates on p. Going back to the ODE we
have local information on q and complete knowledge on p. This suffices.
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Viscoelasticity Moving control

A failing (?) moving support: Open problem

X(ω0, T, 0)

Ω

X(ω0, t, 0)

ω0

Figure: Ω \ ω(t) is not split in two disjoint connected components
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Viscoelasticity Moving control

Other related systems

This issue of moving control is closely related to:

1 Vanishing viscosity limit for the control of convection-diffusion
equations
J. M. Coron and S. Guerrero (2005), S. Guerrero and G. Lebeau
(2007), P. Lissy (2015).

2 Control of compressible Navier-Stokes equations
S. Ervedoza, O. Glass, S. Guerrero & J.-P. Puel (2012) and D. Mitra,
M. Ramaswamy and M. Renardy (2015)

3 Thermoelasticity

G. Lebeau, E. Zuazua, Null controllability of a system of linear
thermoelasticity. ARMA, 141 (4)(1998), 297-329.
P. Albano, D. Tataru, Carleman estimates and boundary observability
for a coupled parabolic-hyperbolic system, Electron. J. Differential
Equations, 22 (2000), 1–15.
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Models involving memory terms Heat with memory

Heat processes with memory terms

5 A simple system of heat process with memory:
yt −∆y +

∫ t

0
y(s)ds = uχω(x) in Q,

y = 0 on Σ,
y(0) = y0 in Ω.

(10)

Setting z(t) =
∫ t

0 y(s)ds, this system can be rewritten as
yt −∆y + z = uχω(x) in Q,
zt = y in Q,
y = z = 0 on Σ,
y(0) = y0, z(0) = 0 in Ω.

(11)

And the previous results apply.

5Joint work with F. Chaves-Silva & X. Zhang
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Models involving memory terms Heat with memory

More general exponential/polynomial memory kernels


yt −∆y +

∫ t

0
M(t − s)y(s)ds = uχω(x) in Q,

y = 0 on Σ,
y(0) = y0 in Ω,

(12)

with

M(t) = eat
K∑

k=0

akt
k (13)

where K ∈ N, and a, a0, · · · , aK , b0, · · · , bK are real constants.
Writing

Z =

∫ t

0
M(s − t)y(s)ds (14)

we get 
yt + ∆y = Z in Q,

∂K+1
t Z =

K∑
k=0

k!ak∂
K−k
t y in Q.

(15)
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Models involving memory terms Heat with memory

What about more general memory kernels?
Note, for instance, that for general analytic kernels we get a coupled
PDE+ODE system involving an infinite number of ODEs.
Can a strategy in the spirit of Cauchy-Kovalewski be applied?
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Models involving memory terms Waves with memory

Waves with memory

Similar techniques can be applied to reduce the following wave equation
with memory 6

ytt −∆y +
∫ t

0 y(s)ds = χOu in Q,
zt = y in Q,
y = z = 0 on Σ,
y(0) = y0, yt(0) = y1, z(0) = 0 in Ω,

(16)

into 
ytt −∆y + z = χOu in Q,
zt = y in Q,
y = z = 0 on Σ,

(17)

by setting

z(t) =

∫ t

0
y(s)ds.

6joint work with Q. Lü & X. Zhang, JMPA, 2017
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Models involving memory terms Waves with memory

In view of this structure it is natural to introduce the following Moving
Geometric Control Condition (MGCC):7

We say that an open set U ⊂ (0,T )× Ω satisfies the MGCC, if

1 all rays of geometric optics of the wave equation enter into U before
time T ;

2 the projection of U onto the x variable covers the whole domain Ω.

This geometric condition turns out to be sufficient for moving control.

7Similar geometric conditions arise in the general context of waves with moving
control regions as in a recent work by G. Lebeau, J. Le Rousseau, P. Terpolilli and
E. Trélat.
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Fractional wave and Schrödinger equations The model

Introduction

8 Controllabity for the fractional Schrödinger equation is shown

iut + (−∆)su = 0 (18)

on a bounded C 1,1 domain Ω ⊂ Rn, provided:

s ≥ 1/2;

The control is active on a neighborhood of the boundary or subset of
the boundary fulfilling the classical multiplier conditions;

In the limit case s = 1/2, the control time T is large enough.

As a consequence the following fractional wave equation is also
controllable:

utt + (−∆)2su = 0. (19)

Note that we do not adopt the definition of fractional Laplacian in terms
of the spectrum, in which case one could use the wave-packets estimates
inherited from the well-known properties of classical wave and Schrödinger
operators.

8U. Biccari, PhD Thesis, UPV/EHU, Bilbao, Spain, Nov. 2016
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Fractional wave and Schrödinger equations The model

Fractional Laplacian

(−∆)su(x) := cn,sP.V .

∫
Rn

u(x)− u(y)

|x − y |n+2s
dy , s ∈ (0, 1) (20)

cn,s :=
s22sΓ( n+2s

2 )
πn/2Γ(1−s)

Fractional Sobolev space

Hs(Ω) :=

{
u ∈ L2(Ω)

∣∣ |u(x)− u(y)|
|x − y | n2 +s

∈ L2(Ω× Ω)

}
,

∣∣∣u ∣∣∣
Hs(Ω)

:=

(∫
Ω
|u|2dx +

∫
Ω

∫
Ω

|u(x)− u(y)|2
|x − y |n+2s

dxdy

) 1
2

,

Hs
0(Ω) := {u ∈ Hs(Rn)| u = 0 in Ωc}.

(21)
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Fractional wave and Schrödinger equations Controlability

Observability inequality

The problem is equivalent to proving the observability inequality∣∣∣p0

∣∣∣2
L2(Ω)

≤ C

∫ T

0

∫
ω
|p|2dxdt (22)

for the uncontrolled solutions:
ipt + (−∆)sp = 0 in Ω× [0,T ] := Q
p ≡ 0 in Ωc × [0,T ]
p(x , 0) = p0(x) in Ω.

(23)
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Fractional wave and Schrödinger equations Controlability

Pohozaev identity for the fractional Schrödinger equation

Let Ω be a bounded C 1,1 domain, s ∈ (0, 1) and δ(x) be the distance of a
point x from ∂Ω. Moreover, let Σ := ∂Ω× [0,T ]. The following identity
holds for sufficiently smooth solutions of the adjoint system:

Γ(1 + s)2

∫
Σ

( |p|
δs

)2

(x · ν)dσdt

= 2s

∫ T

0

∣∣∣(−∆)s/2p
∣∣∣2
L2(Ω)

dt + Im

∫
Ω
p̄(x · ∇p)dx

∣∣∣∣T
0

(24)

where ν is the unit outward normal to ∂Ω at x and Γ is the Gamma
function.
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Fractional wave and Schrödinger equations Controlability

Proof

9

The following identity holds for the fractional Laplacian:∫
Ω

(x ·∇p)(−∆)spdx =
2s − n

2

∫
Ω
p(−∆)spdx−Γ(1 + s)2

2

∫
∂Ω

( p

δs

)2
(x ·ν)dσ

(25)
where ν is the unit outward normal to ∂Ω at x and Γ is the Gamma
function.

Out of this identity, one can extend it to the eigenfunctions of the
fractional Laplacian and then, by Fourier series expansions, to the
time-evolution problem.

9Xavier Ros-Oton, Joaquim Serra,The Pohozaev identity for the fractional Laplacian,
Arch. Rat. Mech. Anal. 213 (2014), 587-628.
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Fractional wave and Schrödinger equations Controlability

Boundary observability

From the time-dependent Pohozaev identity we can obtain the following
boundary observability inequalities:

(i) If s ∈ (1/2, 1), for any T > 0 it holds

A1

∣∣∣p0

∣∣∣2
Hs(Ω)

≤
∫

Σ

( |p|
δs

)2

(x · ν)dσdt ≤ A2

∣∣∣p0

∣∣∣2
Hs(Ω)

(26)

(ii) If s = 1/2, then there exists a minimal time T0 > 0 such that (26)
holds for any T ≥ T0.
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Fractional wave and Schrödinger equations Controlability

To get the interior observability inequality out of the boundary one,
we need to localise estimates near the boundary.
This turns out to be delicate in the fractional diffusion model.
The following elementary identity (yet requiring a technical proof) is
required:10

Let 1/2 < s < 1 and ψ ∈ Hs
0(Ω) and η ∈ C∞(RN) be a cut-off

function such that η = 1 in ω̂, 0 ≤ η ≤ 1 in ω \ ω̂ and η = 0 in ωc , ω̂
being a neighbourhood of the boundary such that (Ω ∩ ω̂) ⊂ ω. Then

(−∆)s(ψη) = ψ(−∆)sη + R

and ∣∣∣R ∣∣∣
L2(RN)

≤ C

[∣∣∣η ∣∣∣
Hs(ω)

+
∣∣∣η ∣∣∣

L2(ωc )

]
.

This identity is obvious for the classical Laplacian since

−∆(ψη) = −ψ∆η − 2∇ψ · ∇η −∆ψη.
10U. Biccari, M. Warma, E. Zuazua, Local elliptic regularity for the Dirichlet fractional

Laplacian, Advanced Nonlinear Studies, Advanced Nonlinear Studies, 17 (2017),
387-409.
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Equations involving space-like lower order terms

Consider the following controlled heat equation involving nonlocal in space
terms:11 

yt −∆y +
∫

Ω K (x , ξ)y(ξ, t) dξ = v1ω in Q,
y = 0 on Σ,
y(x , 0) = y0(x) in Ω

(27)

And let us analyse its null controllability property, which is equivalent to
the observability inequality∣∣∣φ(· , 0)

∣∣∣2 ≤ C

∫
ω×(0,T )

|φ|2 dx dt ∀φT ∈ L2(Ω) (28)

for the solutions of the adjoint system
−φt −∆φ+

∫
Ω K (ξ, x)φ(ξ, t) dt = 0 in Q,

φ = 0 on Σ,
φ(x ,T ) = φT (x) in Ω.

(29)

11E. Fernández-Cara, Q. Lü and E. Z, SICON, 2016, 54 (4), pp. 2009–2019.
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Equations involving space-like lower order terms

Recall that the classical way to establish an estimate of this kind is to start
from a global Carleman inequality of the form∫

Q
ρ−2|φ|2 dx dt ≤ C

∫
ω×(0,T )

ρ−2|φ|2 dx dt, (30)

where C is independent of φT and ρ = ρ(x , t) is an appropriate weight
function that blows up as t → T .
Classical Carleman estimates for parabolic PDEs give∫

Q ρ
−2|φ|2 dx dt ≤ C (ε)

∫
ω×(0,T ) ρ

−2|φ|2 dx dt

+ε
∫

Ω×(0,T ) ρ
−2
∣∣∣ ∫Ω K (ξ, x)φ(ξ, t)

∣∣∣2 dx dt. (31)

The non-local second term in the right hand side cannot be absorbed by
the left hand side.
These difficulties do not arise when dealing with classical potential terms
acting locally in space, i. e. for equations of the form

−φt −∆φ+ K (x , t)φ(x , t) = 0.
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Equations involving space-like lower order terms

We thus develop an alternate approach, based on Fourier analysis.

Denote by λ1, λ2, . . . (resp. φ1, φ2, . . . ) the eigenvalues (resp. the unit L2

norm eigenfunctions) of the Dirichlet Laplacian in Ω. Recall that
0 < λ1 < λ2 ≤ λ3 ≤ · · · , λm ∼ m2/N as m→ +∞ and φ1 > 0 in Ω.

We impose the following conditions on the kernel K ∈ L2(Ω× Ω):

x 7→
∫

Ω K (ξ, x)f (ξ) dξ is analytic for all f ∈ L2(Ω) (32)

 K (x , ξ) =
∑

m,j≥1 kmjφm(x)φj(ξ) in L2(Ω× Ω), with

|K |2R
4
=
∑

m≥1

(∑
j≥1 λ

−1
j |kmj |2

)
λ−1
m e2R

√
λm < +∞,

(33)

where R > 0 sufficiently large that can be defined through the
observability properties of the free equation.
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Equations involving space-like lower order terms

In the context of the classical free heat equation, in the absence of
potential terms, recall that there exist R(Ω, ω,T ),C (Ω, ω) > 0 such that,
for all f ∈ L2(Ω), one has:∑

j≥1

e−2R
√
λj |(f , φj)|2 ≤ C

∫
ω×(0,T )

∣∣∣∑
j≥1

(f , φj)e
−λj (t−T )φj(x)

∣∣∣2 dx dt.
This is a consequence of the global Carleman inequality (due to Fursikov
& Imanuvilov and Lebeau & Robbiano) for the heat equation as observed
by E. Fernández-Cara & E. Z. in ADE, 2000.
This observability inequality, is rather weak. But on the other hand it is
also sharp in the sense that the observed norm cannot be better than∑

j≥1

e−2R
√
λj |(f , φj)|2

for some R.
Note however that so far the sharp constant R is not known in general
although its existence is guaranteed.
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Equations involving space-like lower order terms

This norm provides however a functional setting in which the
non-local lower order term can be treated as a compact
perturbation of the free dynamics.
For any φT ∈ L2(Ω), denote by φ the solution to (29) and write

Φ = p + ζ,

where p is the unique solution to
−pt −∆p = 0 in Q,
p = 0 on Σ,
p(x ,T ) = φT (x) in .

(34)

and
−ζt−∆ζ+

∫
ΩK (ξ, x)ζ(ξ, t)dξ =−

∫
ΩK (ξ, x)p(ξ, t)dξ in Q,

ζ = 0 on Σ,
ζ(x ,T ) = 0 in Ω.

(35)
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Equations involving space-like lower order terms

In this functional setting (exponentially weighted Fourier norm) and under
the previous analyticity assumptions on the nonlocal potential, the
reminder term ζ can be shown to be a compact perturbation.
Compactness-uniqueness arguments can be developed, reducing the
observability inequality for the nonlocal problem to an unique continuation
problem.
Can one guarantee that the unique eigenfunction

−∆Ψ +

∫
Ω
K (ξ, x)Ψ(ξ)dξ = λΨ

such that
Ψ(x) = 0 in ω

is the null one, Ψ ≡ 0?

This can be easily achieved under the assumption that the kernel K
depends analytically on x .
What other results can be expected in that respect?
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Equations involving space-like lower order terms

For the wave equation:
ytt −∆y +

∫
Ω K (x , ξ)y(ξ, t) dξ = v1ω in Q,

y = 0 on Σ,
y(x , 0) = z0(x), yt(x , 0) = z1(x) in .

(36)

the same arguments apply but, this time, milder assumptions on the
Fourier coefficients of the kernel are needed since the perturbation
argument can be developed in the standard energy space.

Note however that the analyticity of the kernel with respect to x is needed
for unique continuation to hold.
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Fractional time derivatives
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Fractional time derivatives

Consider the following control system:12{
∂αt,0+y − y = u in (0,+∞),

y(0) = y0,
(37)

with α ∈ (0, 1), y0 ∈ R and u ∈ L2(0,T ), with the Caputo derivative:

∂αt,a+f
4
=

1

Γ(1− α)

∫ t

a

f ′(s)

(t − s)α
ds. (38)

System (37) is null controllable at time T > 0 if for any y0 ∈ R, there is a
control u ∈ L2(0,T ) (u(t) ≡ 0 for all t ≥ T ) such that the corresponding
solution y(·) satisfies that y(t) = 0 for all t ≥ T .

The following holds: 13

12Q. Lü, E. Zuazua, MCSS, (2016), no. 2, 28:10.
13Complementing earlier results by D. Matignon and B. d’Andréa-Novel, 1996.
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Fractional time derivatives
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Fractional time derivatives

Theorem

Whatever T > 0 is, system (37) is not null controllable.
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Fractional time derivatives

Sketch of the proof.

If the system were controllable:∫ t

0

y ′(s)

(t − s)α
ds =

∫ T

0

y ′(s)

(t − s)α
ds = 0, ∀ t ≥ T .

Taking derivatives∫ T

0

y ′(s)

(t − s)α+j
ds = 0, ∀ t > T , j ∈ {0} ∪ lN. (39)

This, together with the density of polynomials (Weierstrass approximation
theorem)

y ′(·) ≡ 0 in [0,T ).

Taking into account that y(T ) = 0 this also implies that y ≡ 0 in [0,T ].
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Perspectives

Perspectives

Weakening of geometric restrictions on the moving support of the control
for viscoelasticity.

General analytic memory kernels.

Models involving fractional time derivatives: What kind of control
theoretical properties can be expected once exact controllability is
excluded?

Geometric Optics for wave-like models involving the fractional Laplacian.

Can Carleman inequalities handle non-local terms?

Links with delay systems?

Nonlinear models
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