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Consensus model

Collective behavior models

m Describe the dynamics of a system of interacting individuals.

m Applied in a large spectrum of subjects such as collective behavior,
synchronization of coupled oscillators, random networks, multi-area
power grid, opinion propagation,...

Figure: Fitz-Hugh-Nagumo

oscillators [Davison et al., Figure: Yeast's protein

Allerton 2016] interactions [Jeong et al.,
Nature, 2001]

Figure: German electric

network
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Consensus model

Some basic references on the Dynamics and Control on
networks and graphs

[1] Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence.
Springer-Verlag Berlin Heidelberg.

[2] Olfati-Saber, R., Fax, J. A. & Murray, R. M. Consensus and
cooperation in networked multi-agent systems. |IEEE Proc. 95, 1 (2007),
215-233.

[2] Y.-Y Liu, J.-J. Slotine & A.-L. Barabasi, Controllability of Complex
Networks, Nature, 473, 167-173 (12 May 2011).

[3] T. Vicsek & A. Zafeiris, Collective motion, Physics Reports 517
(2012) 71-140.

[4] S. Motsch & E. Tadmor. Heterophilious dynamics enhances
consensus. SIAM Review 56, 4 (2014), 577-621.

And many others® 2

M. Caponigro, M. Fornasier, B Piccoli & E. Trélat, M3AS, 2015

2M. Burger, R. Pinnau, A. Roth, C. Totzeck & O. Tse, arXiv 2016.
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Consensus model

Complex behavior by simple interaction rules

Systems of Ordinary Differential Equations (ODEs) in which each agent's
dynamics follows a prescribed law of interactions:

First-order consensus model

P

Z aij(xi(t) = xi(t)), i=1,...,N

m |t describes the opinion formation in a group of N individuals.

m x; € R, d > 1, represents the opinion of the i-th agent.
[J. R. P. French, A formal theory of social power, Psychol. Rev.,
1956].

m |t applies in several fields including information spreading of social
networks, distributed decision-making systems or synchronizing
sensor networks, ...
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Consensus model

From random to consensus

\\\\

Figure: Opinions over a network : random versus consensus states
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Consensus model

Linear versus Nonlinear

m Linear networked multi-agent models: a; ; are the elements of the
adjacency matrix of a graph with nodes x;

oo > 0, if i#j and x; is connected to x;
" 0, otherwise.

This leads to the semi-discrete heat equation on the graph.
m Nonlinear alignment models:
ajj = a(|x; — x;|), where a:R; — Ry,
a > 0 is the influence function. The connectivity depends on the

contrast of opinions between individuals.
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Two limit models

Limitation of the mean-field representation

As the number of agents N — oo, ODE — PDE.

m Nonlinear alignment models:
L
X = Nzla(|xjfx,-|)(xjfx,-), i=1,...,N, a:R; - Ry.
J:

Classical mean-field theory: Define the N-particle distribution
function3

=]

N
1
pN = pN(x, t) = Z Oxi(t)-
i=1

and let N — +o0.

3P. A. Raviart, Particle approximation of first order systems, J. Comp. Math., 4 (1)
(1986), 50-61
By particle methods of approximation of time-dependent problems in PDE, we mean
numerical methods where, for each time t, the exact solution is approximated by a
linear combination of Dirac measures...
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Two limit models

m The limit ;2 of the empirical measures ;N solves the the nonlocal
transport equation*

Dep(x, ) = O (lx OV Iu(x, 1)])
VI(x 1) = [ albe = y)x =ty 1.

The convolution kernel describes the mixing of opinions by the
interaction of agents along time.

m In other words:®

Doyt = (u(x, 0) [ alx = yDx = Pty dy).

4The system of ODEs describing the agents dynamics defines the characteristics of
the underlying transport equation. The coupling of the agents dynamics introduces
the non-local effects on trasport.

5Motsch and Tadmor, SIAM Rev., 2014
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Two limit models

The mean field model does not track individuals!

m The mean-field equation involves the density u, which does not contain
the full information of the state.

m The density 1 does not keep track of the identities of agents (label /).
Different configurations x; with the same distribution 1

€Ty /‘-‘5 T uiﬁ
1 X ) 1 X 4
1 L
0 X 0 X ~
1 +
-1 X T -1 X T

1 2 3 4 1 2 3 B

Figure: x' = (—1,0,1) (left) and x* = (=2,3, —1) (right) generate the
same density function.

N
GMN(X) = % Zi:1 Ox;
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Two limit models

Graph limit method: finite-difference approach

m Based on the theory of graph limits (Medvedev, SIAM J. Math.
Anal., 2014).
m Considering the phase-value function x"(s, t) defined as

N N
MN(s, 1) =Y xi(t)xi(s 1), se(0,1), t>0, [ Jhi=[0,1].
i=1 i=1
HIFEEAN
*x xR *
X Hex
¥

Figure: Opinion (N = 20) and its finite-difference function z*° on [0, 1]
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Two limit models

m Let (xV)Y, be the solution of the following consensus model:
LN
N NN N
Xi = Nzai,j (Xj =),
=1

where a,’-VJ- are constant and ¢ represents nonlinearity.

m According to the graph limit theory?, if

N
N N
W™(s,s.) = E 1auﬂ[ﬁﬁ”)(5)1[#%”)(5*)
ij=

is uniformly bounded and converges to W, then in the limit N — oo
we get the non-local diffusive equation,

Orx(s,t) = ox W (s, s.)(x(ss, t) — x(s, t))ds.

7G. S. Medvedev. SIAM J. Math. Anal. 46, 4 (2014), 2743-2766.
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Two limit models

Nonlinear subordination
U. Biccari, D. Ko & E. Z., M3AS, 2019, to appear

1 N

Xi = > allx; — xil) (x5 — ).
j=t
m The Graph limit model:

X:(s, t) = a(|x(ss, t) — x(s, X(S4, t) — x(s, t))ds,.
(s, 1) /[071] (Ix(se; £) = x(s, O)[)(x(sx, t) — x(s, 1))
m The mean-field limit:

pe )V (VIuli) = 0. where V[l i= [ ale—x)n(x.. ).

Subordination transformation

From non-local "parabolic" to non-local "hyperbolic":
p(x, t) = [s0(x — x(s, t))ds.

8
8Kinetic / conservation laws: Lions-Perthame-Tadmor, JAMS, 1994
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Control “guidance-repulsion”

Motivation: Real life

The number of individuals is small, yet the interaction dynamics and control strategies are
complex

16 /30



Control “guidance-repulsion”

The model

R. Escobedo, A. Ibafiez and E.Zuazua, Optimal strategies for driving a mobile agent in a
“guidance by repulsion" model, Communications in Nonlinear Science and Numerical Simulation,
39 (2016), 58-72.

We develop and control a guidance by repulsion model based on the
two-agents framework: the driver, which tries to drive the evader.

The driver follows the evader but cannot be arbitrarily close to it
(because of chemical reactions, animal conflict, etc).

H The evader moves away from the driver but doesn’t try to escape
beyond a not so large distance.

The driver is faster than the evader.

A At a critical short distance, the driver can display a circumvention
maneuver around the evader, forcing it to change the direction of
its motion.

By adjusting the circumvention maneuver, the evader can be driven
towards a desired target or along a given trajectory.
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Control “guidance-repulsion”

One sheep + one dog + Circumvention control
The control k(t) is chosen in feedback form to align the gate, the sheep and the dog.

In short, the model for ug,u. € R? can be written as:

l--ld:Vd; l-.‘e:"e

Vg = —fa(Jug — ue|)(ug — ue) + £(t)ga(|ug — ue|)(ug — ue)" — vgvg
Ve = _fe(|ue - ud|)(ud - ue) — VeVe
ug(0) = ug, uc(0) = ug, vg(0) =0, v(0) =0

(1)

10 10 i
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Control “guidance-repulsion”

Symmetric dissipation

When
Ve/Me = vg/mg =:v >0,

the model® reduces to the dynamics of the relative position, u = uy — u,,

i+ f(Ju))u + vi = x(t)ut.

For the interaction coefficient f(r), we assume

> >
flry= 420 forrzre with £/(rc) >0
<0 for O<r<r.

m The equation on the left-hand side follows the motion of damped
oscillator under a central potential [ rf(r)dr.

m The negativity/positivity of f makes the relative distance u ~ r.

Two main regimes arise: Pursuit x(t) =0 / Circumvention (t) # 0.

9Without loss of generality we assume that gz = 1.
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Control “guidance-repulsion”

Steady states

For each mode, we have the following steady states which characterize
the dynamics:

m Pursuit mode: x(t) =0
u(t) =u, € R? and v(t)=(0,0) with |u,|=r,
where the driver and evader behave uniform linear motions,

fd(u*)u*
v

u,(t) = t+u0), ¢(=d,e.

m Circumvention mode, k(t) =k

u(t)=r, (cos (gt),sin (gr)) )

where the driver and evader rotates on each circle,
K (K
w(t)=r (cos (ft + qﬁg),sm (ft + gbg)) {=d,e.
v v
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Control “guidance-repulsion”

Off-Bang-Off control of the evader

Control k(1)

Theorem

Let f(r) be as before. Then, for a given destination us € R? and
ug # (0,0), there exist t, tp, tr and k and

if t €[t t],

K
t) = h that ue(tr) = ur.
~(1) {0 if te€0,t)U(t, tr], such that —ue(tr) = us
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Stability from Lyapunov

Stability for the linear system

Controlling the system needs a good understanding of the dynamics,
especially the asymptotic stability of steady states.

4

i+u+va=ru-, uecR?

which is the damped harmonic oscillator with an additional perpendicular
(circumvention) interaction. We want to prove that u decays to (0, 0).

The standard energy
1
E(t) := 5 (|ul* + [v]*)

is no more non-increasing from the perpendicular term xu™.

E(t) = —v|v|?> + k(t)ut -v.
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Stability from Lyapunov

However, we may construct a perturbed energy,

F(1) = E(0) +3(3

S luf? +u-a),

which fulfills

Figure: The decay rate of E(t) from spectral analysis and its estimation from
hypocoercivity when v = 0.2 (left) and v = 20 (right)
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Stability from Lyapunov

The observed dynamics

From the relative position u, we can recover partial information for the
positions uy and ue.

k=1,v=1 k=1v=2 k=1,v=4

Driver
Evader

Driver
Evader

Driver
Evader

05 05

ordinate
ordinate
ordinate

abscissa abscissa abscissa

Figure: The trajectory of the driver and evader with xk = 1 and various v:
v =1 (left), 2 (middle), and 3 (right).

This analysis can be used for our nonlinear guidance-repulsion model in
order to conclude the asymptotic stability of steady states. Then, we may
prove the controllability of the system using the steady states.
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Stability from Lyapunov

Computational feedback control of a sheep-flock by the

action of a dog, guided by the shepherd
The feedback law is chosen so to orient the dog and the center of the sheep-flock with the

destination gate
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Multiple evader dynamics

If the driver tracks the evader based on the maximum distance,

ordinate

abscissa

Figure: An example on trajectories of five evaders with a bang-bang control 28/30
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Conclusions

Conclusions

m Complex behaviour of networks from a dynamical and control
perspective: N — +oc.

m Optimal location of sensors and actuators for networks is a
challenging problem 10

By F !
m Multi-driver modelling and control is challenging.

m Practical applications, with a limited number of individuals, leads to
challenging nonlinear dynamical systems.

Make all these analytical and computational developments to be of real

use in Social and Behavioral Sciences.

10Y Privat, E Trélat & E. Z. ARMA, 2015.
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