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Intro
Introduction

Partially dissipative linear hyperbolic systems may develop a
complex asymptotic behavior as t — oo depending on the space
dimension, the dimension of the system, and the interaction
between the free dynamics and the damping operator.
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Introduction

Partially dissipative linear hyperbolic systems may develop a
complex asymptotic behavior as t — oo depending on the space
dimension, the dimension of the system, and the interaction
between the free dynamics and the damping operator.

@ The understanding of this issue is relevant, in particular, for
analyzing global existence of solutions for nonlinear problems,
near constant equilibria.
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Intro
Introduction

Partially dissipative linear hyperbolic systems may develop a
complex asymptotic behavior as t — oo depending on the space
dimension, the dimension of the system, and the interaction
between the free dynamics and the damping operator.

@ The understanding of this issue is relevant, in particular, for
analyzing global existence of solutions for nonlinear problems,
near constant equilibria.

@ The issue turns out to be closely linked to the classical
(Kalman/LaSalle) rank condition for the control of
finite-dimensional linear systems, the (SK) condition and
other notions such as hypoellipticity and hypocoercivity of
partially diffusive PDEs.
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Preliminaries in control theory

The Kalman/LaSalle rank condition

Controllability of finite dimensional linear systems
Let n,m € N* and T > 0. Consider the following finite
dimensional system:

{ x'(t) = Ax(t)+Bu(t), te(0,T),

0 (1)
x(0) = x°.

Here A is a real n X n matrix, B is a real n x m matrix,

x : [0, T] — R" represents the state and v : [0, T| — R™ the

control.

System (1) is controllable in time T > 0 if given any initial and

final one x%, x! € R” there exists u € L2(0, T,R™) such that the

solution of (1) satisfies x(T) = x*.

Obviously, in practice m < n. Of particular interest is the case

where m is as small as possible.
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Preliminaries in control theory

The control property does not only depend on the dimensions m and

n but on how the matrices A and B interact

X'(t) = Ax(t) + Bu(t)

Theorem

The system (A, B) is controllable in some time T if and only if
rank[B, AB,--- ,A"'B] = n. (2)

Consequently, if system (1) is controllable in some time T > 0 it is
controllable in any time.

v

Note that, the so-called controllability matrix [B, AB,--- , A"~ 1B]
is of dimension n x nm. Thus, in the limit case where m =1 (one
single control), it is a n X n matrix. In this case the Kalman rank
condition requires it to be invertible.
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Preliminaries in control theory

Key idea of the proof.

t
x(t) = e?txP +/ eA(t=) By(s)ds

0
and
AT =" ARk,
k>0
Thus
t AKB [t
x(t) = eMx0+ [ A=) By(s)ds = eAtxo+Z —— [ (t—s)*u(s)ds
9 k' Jo

k>0

From Cayley-Hamilton's Theorem all powers A¥ of A with k > n
are linear combinations of AKX with k =0,...,n — 1. Thus, it is the
range of [B, AB, A?B, ..., A""1B] that determines the
controllability of the system.
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Preliminaries in control theory

Stabilization of finite dimensional linear systems

The controls we have obtained so far are the so called open loop
controls. In practice, it is interesting to get closed loop or feedback
controls, so that its value is related in real time with the state
itself.

Assume, to fix ideas, that A is a skew-adjoint matrix, i. e.

A* = —A. In this case, < Ax,x >= 0. Consider the system

{ X/xm)AftEu 3

When u = 0, the energy of the solution of (3) is conserved.
Indeed, by multiplying (3) by x, if u = 0, one obtains
d 2
—|x(t)|c =0.
& (o)
Hence,
Ix(t)| = [x°], Vt>0.
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Preliminaries in control theory

We then look for a matrix L such that the solution of system (3)
with the feedback control law

u(t) = Lx(t)

has a uniform exponential decay, i.e. there exist ¢ > 0 and
w > 0 such that
[x(t)] < ce™|x°|

for any solution.

In other words, we are looking for matrices L such that the solution
of the system

x' = (A+ BL)x = Dx

has an uniform exponential decay rate.
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Preliminaries in control theory
Theorem

If A is skew-adjoint and the pair (A, B) is controllable then
L = —B* stabilizes the system, i.e. the solution of

{67 @

has an uniform exponential decay.

Proof: With L = —B* we obtain that

1d
§I|X(t)|2 = — < BB*x(t),x(t) >= — | B*x(t) \2§ 0.
Hence, the norm of the solution decreases in time.

In fact the decay rate is exponential since we are in
finite-dimensions (and all norms are equivalent) and the following
unique-continuation property holds: B*x =0 — x =0.
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Preliminaries in control theory

An example: The harmonic oscillator

Consider the damped harmonic oscillator:
mx"” + Rx+kx' =0, (5)

where m, k and R are positive constants.

It is easy to see that the solutions of this equation have an
exponential decay property. Indeed, it is sufficient to remark that
the two characteristic roots have negative real part. Indeed,

—k+vVk?—4mR
mrP+R+kr=0&r = m
2m
and therefore
— if k2 <4mR
Rery = K K2 R 2
—2mj: Zm — 2m if k 24mR
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Preliminaries in control theory

We observe here the classical overdamping phenomenon.
Contradicting a first intuition, it is not true that the decay rate
increases when the value of the damping parameter k increases.

w = decay rate

A T e

k* = 2vVmR k = damping
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Systems of balance laws
Systems of balance laws

We consider nonlinear hyperbolic systems of the form

dw |\~ OFj(w)
ot

=Q(w), xeR™ t>0,

w: R x R”™ — R"
(t , x) = w(tx)

arising in so many applications: fluid mechanics, gas dynamics,
traffic flow, ralaxation, ...

Local (in time) smooth solutions are known to exist (C. Dafermos,
L. Hsiao-T.-P. Liu, A. Majda, D. Serre,...)

But possible singularities (i.e. shock waves) may arise in finite
time.

The nonlinear term @ may play the role of a partial dissipation and
help to the existence of global smooth solutions.
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Systems of balance laws

Global smooth solutions in a neighborhood of a constant
equilibrium: Q(w*) = 0.

THE METHOD = LINEARIZATION + FIXED POINT.

If the linearized dynamics exhibits solutions that decay as t — oo,
a perturbation argument may hopefully allow showing that, locally
around the constant equilibrium, solutions are global and decay as
well.
One has to distinguish:

e Total dissipation : Q(w) = —Bw, B >0
0 O
0 -D
Y. Shizuta & S. Kawashima (85), Y. Zeng (99), W. A. Yong
(04), S. Bianchini, B. Hanouzet & R. Natalini (03, m =1),...

Example : Isentropic Euler equations with damping
ou Ov 0 ov  Of(u)

o Partial dissipation: Q(w) = <

ot ox " Bt Tox
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Partially dissipative linear hyperbolic systems

ow =, Ow m N

at—kgAja—Xj:—Bw,xeR ,weR (6)
Al ., Am . 0 0 inl XtDX >0
symmetric -\ 0 D Tm VX eR™-—{0}

Goal: Understand the asymptotic behavior as t — oco.
Apply Fourier transform:

a R m
7‘2’ = (=B —iA(€))W  where  A(€) = ZI’EJAJ
=

Lack coercivity :
([B +iA(E)]X, X) = (BX, X) = (DXz, Xo) ¥ c|X[?
But possible decay depending on &:

exp|(—B — iA(£))t] < Ce M)t
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PARTIALLY DISSIPATIVE LINEAR HYPERBOLIC SYSTEM

m-PARAMETER (&) FAMILY OF FINITE-DIMENSIONAL
PARTIALLY DISSIPATIVE n-DIMENSIONAL SYSTEMS.

The asymptotic behavior of solutions is determined by the behavior
of the function & — A(€) giving the decay rate as a function of &.
Example: The dissipative wave equation

Upt — Uxx + Uy = 0.
Ug = Vy — U, Vi = Ux.
Solutions may be decomposed as
@ A high frequency component tending to zero exponentially

fast as t — 0O;

@ A low frequency component with the same decay rate as the
heat kernel t=1/2 decay in L™ for L! data.

This corresponds to a function A(¢) ~ min(|¢[?,1).



(SK) for partially dissipative linear hyperbolic systems

The pioneering and well-known result by Shizuta-Kawashima (85)
may be viewed as a generalization of the example above on the
dissipative wave equation.

Under the condition (SK) below
(SK) : V¢ € R™, Ker(B) N {eigenvectors of A(¢)} = {0}

= exp[(—B — iA(€))t] < Ce O, A\(€) = emin(L, [¢?)

Their proof is based on a (long) linear algebra computation.

Consequences :
(1) vyw® € L1 N [2(R™, R"), w = w + wp
‘Wh(t) < Ce two
L[2(R™,R") L[2(R™,R")
‘ (1) < Ct 7 |w
Loo(R™,RM) L1(R™ RN

(2) Global smooth solutions for the NL system for initial data close
to a constant equilibrium.
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Our contributions (K. Beauchard & E. Z., ARMA, 2011)

1st step :
(SK) and rank condition

2nd step :
Measure of the decay rate for B + iA(&)

3rd step :
Classification of the asymptotic behavior for
linear hyperbolic systems (with/without (SK))

4th step :

Nonlinear systems of balance laws :
global smooth solutions without (SK)
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(SK) and the rank condition
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(SK) and rank conditions

The (SK) condition is equivalent to imposing the rank condition to
the pairs (A(§), B) for all values of £ € R™.

A symmetric

g_ (00 T XtDX > 0
“\o D) 1m VXeRm-{0}

(SK) : Ker(B) N {eigenvectors of A} = {0}
< The pair (A, B) satisfies the rank condition

& BeAMtX =0forallt>0 = X=0

n—1
< 3 |BAKX|? is a norm on R” (the control-quadratic form)
k=0
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@ The (SK) condition requires the conditions above to be
satisfied for all £ € R".

@ In1—d (m=1) the (SK) condition is sharp. Whenever it
fails, travelling wave solutions with L2-profiles exist, thus
making the decay of solutions impossible. This is so because,
in 1 — d, the rank condition holds for all £ € R if and only if
the pair (A, B) sastifies the rank condition.

@ This is not true igqthe muti-dimensional case since

A(€) = A(§) := > &jA; depends on £ in a non-trivial way.
j=1
@ In view of the analysis above it is more natural to analyse the

2 as

n—1
positive definiteness of the quadratic form 3 |BA(£)kX
k=0

function of &.

@ This will illustrate the existence of many other scenarios that
(SK) excludes, except in one space dimension (m = 1). In the
multi-dimensional case (SK) is a sufficient condition for decay,
but is far from being necessary.
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Decay rate for B + iA(¢) as a
function of ¢
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A measure of the decay rate as a function of £

Al,...,Am o 0 0 inl o - A
B—<0 D) 1 A(€) -_J;SJAJ

symmetric

£=pweR™ p>0 we Sml (myg) T well chosen

n—1
N e(w) := min{>_ e™|BA(w)*x|* x € S"1}.
k=0

Jde. > 0, ¢ > 0 such that Ve € (0,¢,),
exp[(—B _ ipA(w))t] < 2e7cN*,((w)min{1,p2}t‘

Remark : (SK) & N, (w) > Ny > 0,Vw € S™ 1.

In general, N .(w) may vanish for some values of w € S™~1, in
which case the decomposition of solutions and its asymptotic form
is more complex.
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Our proof:

Is based on energy arguments and the construction of a
suitable Lyapunov functional that allows exhibiting the
exponential decay rate. In that sense it is similar to the
techniques employed for proving decay rates for dissipative
wave equations, and the works by C. Villani et al. on the
decay for kinetic equations and hypocoercivity.

Yields the result by Shizuta-Kawashima in a simpler way, but
shows that it only covers one of the many possible behaviors
one may encounter for m > 2.

Provides quantitative estimates on the decay rate as a
function of £ that can be used for a better understanding of
the nonlinear problem.
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_Intro_Preliminaries in control theory _Systems of balance laws I
An example: the dissipative wave equation.
Utt — Uxx + Uy = 0.

Wee + 2w + we = 0.
1
ee(t) = Slwel? + E2wP].
deg(t
f( ) _ _|Wt|2~

The exponential decay ratecgoes not come directly out of this. But
it is easy to check that
fe(t) = ec(t) + ewws,
is, for & small enough, such that
fe ~ e
and, on the other hand,

dfe(t)

— < —c(&,e)fe(t).
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Indeed,
dfe(t)

—— = —]Wt]2+5|wt|2+gwwtt =—(1 —5)]Wt]2 —e2w? — ewwy

dt

2
< —(1—e—55)lwi — Fw

Then, it suffices to take:
1
— 2 =
€ = min (5 , 4> .

Note that there is an extensive literature on the extensions of this
result to nonlinear problems (M. Nakao, A. Haraux, ... ).
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Decay rate for B+ iA(§) : p<1

we ST Z €| BA(w)*x|?> > N, > 0,Vx € S" L.

x = (=B — ipA(w))x, Goal :|x(t)| < 2|xg|e~Neer’t
Strategy : find £(x) ~ |x|? such that % < —cp? Ny L
n—1
L(x) = |x]* + p) ™I ((A(w)*BBA(w)* 'x, x))
k=1
‘é—f = —2Re({((B + ipAu)x,x))

—p Yt emeIm ({(AS)<BBAKL(B + ipAL)x, x))
—p Y emdm (((AL)*BEBAK1x, (B + ipAu)x))

N

—2G1|BxP? — 2 4] em| BALxP?
+p Sk e B[] BAL 1 BALX|+ |4
+72 42 em | BAY x| BAL ]
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Asymptotic behavior for

linear hyperbolic systems
(with or without (SK))
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The set of degeneracy

The minimum of the control quadratic form
Ny (W) := min{3 75 e™|BA(w)¥x|?; x € S"~1}
measures the decay rate for B + ipA(w)

Ny e(w) >0 < Ker(B) N {eigenvectors of A(w)} = {0}
< (A(w), B) satisfies the rank condition.

The set of degeneracy :
D(B +iA(€)) = {€ € R™; rank[B|BA(£)|...|BA(£)""Y] < n}
is an algebraic submanifold

— either |D| =0 < N, > 0 a.e. = strong L? stability

— or D =R"™ : d non dissipated solutions
Decomposition ?

Enrique Zuazua Decay - Partially Dissipative Hyperbolic



|D| =0, ng =1 (B is effective in all but one components)

When ny = 1, D is a vector subspace of R™ and

N, (w) = cmin{1, dist(w, D)?},Vw € S™ 1.

As a consequence we have the following new decomposition

W = Wp + Wj + Wpew

with

LZ(Rm RM) L[2(R™,R")
LOO(R'" R") L1(Rm,R")

*

‘W"ew ‘LOO(R"’,R")
Example: n=m=2; D = {(£,&) : a%1§1 4= 3%152 = 0}.
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Classification of the asymptotic behaviors

?/:+;Ajgl/<j:Bw, xeR” weR”
(SK) D L? stability | decomposition
m=1 (SK) {0} yes e '+ %
Vn no (SK) R no et + %
+trav. waves
n=2 (SK) {0} yes e t+1
Vm no (SK) hyperplane yes et + % + %
no (SK) R™ no e '+ trav. wave
Vn (SK) {0} yes e t+ tm—l/Q
VYm no &ny =1 | vect. subsp. yes et + t"’% + %
no (SK) | submanifold yes open
R™ no open
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Existence of global smooth solutions with (SK) (Yong, 04)

ow S~ OEW) g B::<o 0)$nl

ot = Ox;

Assume W, constant equilibrium with (SK) on its linearized
system.
Let s > [m/2] + 2 be an integer. There exists § > 0 such that,

Yo € We + H5(R™, R") with ‘Wo W,
unique global solution w € C°((0, +00):, We + H®).

p < 0 there exists a

The proof uses local existence, a continuation argument and the
decay rate of the linearized system around We,.

A SIMILAR RESULT HOLDS IN THE MORE GENERAL
SETTING IN WHICH WE HAVE ENLARGED THE
DECOMPOSITION RESULTS IN THE ABSENCE OF (SK).
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Connections with hypoellipticity & hypocoercivity

Hypoellipticity = The fundamental solution is C* away form
the diagonal (....L. Hormander, 1968....)

n n
Oru — Z ajk6J-2ku + Z bjxxjOku = 0.
jk=1 jik=1
Example: Kolmogorov equation: u; — uy — xuy, = 0.
After applying Fourier transform:
n
Ue = A&, U = > bidi(&U) = 0.

J,k=1

Hypoellipticity fails iff A(eB*¢, eB5¢) = 0 for all s > for some ¢ # 0.
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Hypocoercivity (....C. Villani, 2006,....)
fr+LF=0

L=A"A+ B, where B* =—-B.

Example: Similar models as above but in the context of kinetic
equations: Fokker-Planck equation:

fo — AF+ v - Vif —VV(x)-V,f =V, (vf) = 0.

Despite the lack of coercivity of L, under suitable assumptions on
the commutators of A and B, one can build a modified energy or
suitable Lyapunov functional (similar to our construction of the

functional £) in which the time exponential decay can be proved.
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Conclusion

Control theoretical tools applied to analyze the decay rate for
B + iA(§) yield:

@ For linear hyperbolic systems :
a (yet non complete) classification for the asymptotic
behaviors, with and without (SK),

@ for nonlinear systems of conservation laws :
existence of global smooth solutions around some degenerate
constant equilibria.

Future work:
o To make the classification of linear systems complete?

@ Significantly enlarge the class of nonlinear systems for which
global existence holds.

2G. Ottaviani and B. Sturmfels, Matrices with eigenvectors in a given
subspace, Proc. Amer. Math. Soc. 141 (2013), 1219-1232.

Enrique Zuazua Decay - Partially Dissipative Hyperbolic



Existence of global smooth solutions : proof

Strategy : local existence 4+ continuation argument

2 T 2 2
Py2
w(T) - we| +Of\W2\HS + QN(WER[Vaw| < wo— W
1st step : [%-estimate
2 T 2 2
ol o2 ol <o

2nd step : H*-estimate

2 T 2 2 T 2
w(T) +2/0 ‘WQ‘Hsg‘WO(HS+CNS(T)/O [Vw

. Hs—1
Ns(T) := sup{’w(t) — We e te (0, T)}
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2
. : T
3rd step : estimate on |, ’VW’LZ

N, (WE)= hypocoercivity for the linear system

2 2 2
’W(T) - We we t fOT ’W2’HS + N*(Wg)z‘VW‘HH

2
< |wo = We| |+ (NG(T) + [We = WEP) f [Vw

Hs—l
If No(T) + [We — WEI2) < No(WPE)? then
w(T) — We‘ < ’WO _ We‘ _
Hs Hs
This always holds when
‘Wo — W < 3N.(WE)? |We — WE| < 1N, (WP)
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