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What is Machine Learning?
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A simplified map of Machine Learning

Figure: Source: https://de.mathworks.com/help/stats/machine-learning-in-matlab.html
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Machine Learning (Supervised learning)

Interested in approximating a function f : Rd → Rm, of some class (C0, L1 . . . ),
which we don’t know explicitly.

We have data: its values2 {~yi}Si=1 ∈ (Rm)S at S distinct points
{~xi}Si=1 ∈ (Rd)S .

Generally split the S data points into training data {~xi, ~yi}Ni=1 and testing data
{~xi, ~yi}Si=N+1.

Machine learning consists in:
1 Propose a candidate approximation fΘ(·) : Rd → Rm, depending on parameters Θ

and some hyper-parameters L ≥ 1, {Nk};
2 Tune Θ as to minimize the empirical risk3

N∑
i=1

`(fΘ(~xi), ~yi),

where ` ≥ 0, `(x, x) = 0 (e.g. `(x, y) = |x− y|2). This is called training.
3 Check if test error

∑S
i=N+1 `(fΘ(~xi), ~yi) is small. This is called generalization.

2Possibly noisy, so f(~xi) = ~yi + εi with εi ∼ N (0, ς2) for instance.
3Also called training error
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Model validation

Question: After training, how do we know if the optimized neural net is good?
Answer: Check if the test error

∑S
i=N+1 `(fΘ(~xi), ~yi) is small.

Figure: Underfitting, good generalization, and overfitting. We wish to recover the function
f(x) = cos( 3

2πx) (blue) on (0, 1) from S = 20 noisy data samples. Constructed
approximations using N = 12 training data, while the remaining 8 samples are used for testing
the results. The most complicated model (right) is not necessarily the best (Occam’s razor)
This is related to the Runge phenomenon.

Enrique Zuazua Mathematical Control in Machine Learning 6 / 1



Supervised learning

Example (Binary classification)

Assume that all the points in some Ω ⊂ Rd are either blue or red in a not too
incoherent way.

Goal: Given an arbitrary blue or red point ~x ∈ Ω ⊂ Rd, say what is the color of ~x
(for simplicity, 0 is blue and 1 is red).

Relation point-color represented by a function f : Rd → {0, 1}, which we don’t
know explicitly.

We know the colors {~yi}Mi=1 ∈ {0, 1}M of M points {~xi}Mi=1 ∈ (Rd)M . We
take N training data.
Machine learning consists in:

1 Proposing a candidate approximation fΘ(; ·) : Rd → R, depending on parameters Θ

and some fixed hyper-parameters L ≥ 0, {Nk}Lk=0;
2 Optimizing Θ so that

∑N
i=1 |fΘ(; ~xi)− ~yi|2 is small

3 Compute optimizer Θ̂; then given any ~x ∈ Ω,

F (~x) := 1{
fL(Θ̂;·)≥ 1

2

}(~x)

will yield the color.
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The (simplified) example

Figure: We have the training data points {~xi}4000
i=1 ∈ ([0, 2]2)4000 on the left, each having

respective colors {yi}4000
i=1 ∈ {0, 1}

4000. The data are arranged in a chess-like pattern. On the
right, we plot the level-sets of F (~x) := 1{

fL(Θ̂;·)≥ 1
2

}(~x) for ~x ∈ [−0.5, 2.5]2 which separates

the points with 80% accuracy. We used a neural network with 1 hidden layer and 5
components.
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A motivating practical example

Remark: This classification procedure can be used for classification in image
processing (e.g. cat-dog recognition, handwritten digit recognition).

Figure: Classifying handwritten digits from the MNIST dataset using a neural network. The
inputs {~xi}50

i=1 ∈ (R28×28)50 are pixelated images, while the labels {~yi} ∈ (R10)50

correspond to numbers from 0 to 9, each one identified with an element of the canonical basis
{ek}10

k=1 of R10. We used a network with 2 hidden layers (one with 256 and a second with 64
neurons). Illustrated are the transitions through the layers when the datum is the digit 5 ' e6.
The three rightmost plots indicate the three layers of the model, namely the middle 2 are the
values of σ(A0z0 + b0) ∈ [0, 1]256 and σ(A1z1 + b1) ∈ [0, 1]64 (reshaped in a matrix). The
brighter a pixel, the closer the value is to 1
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Example ("Learning" sin(x))

Goal: Given M = 4000 noisy values of sin(x) on (0, 6π), deduce the original
function sin(x).

We thus know the values {yi}Mi=1 ∈ [0, 1]M of M points {xi}Mi=1 ∈ (0, 6π)M .
We take N training data.
Machine learning consists in:

1 Proposing a candidate approximation fΘ(; ·) : Rd → R, depending on parameters Θ

and some fixed hyper-parameters L ≥ 0, {Nk}Lk=0;
2 Optimizing Θ so that

∑N
i=1 |fΘ(; xi)− yi|2 is small

3 Compute optimizer Θ̂; then given any ~x ∈ (0, 1), fL(Θ̂; ·) should approximate
f(x) = sin(x).

Remark: The procedure can be used to approximate more complicated functions
(including solutions of PDEs, etc.)

Thus the difference between classification and regression is in the co-domain of
the function we wish to approximate. In classification, the co-domain is discrete,
contrary to regression, where the function has continuous values.
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The example

Figure: The N training data in blue and the trained neural network solution in orange (left),
with a zoom in a subinterval (right). We used a neural network with 2 hidden layers consisting
of 4 components each.
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Neural networks
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Activation function

Given σ ∈ C0(R;R), we denote/define componentwise for z ∈ Rd,

(1) σ(z) :=


σ(z1)
σ(z2)

...
σ(zd)

 ∈ Rd.

Enrique Zuazua Mathematical Control in Machine Learning 13 / 1



Neural Networks (basic definition)

Definition (Neural network)

Let L ≥ 0, d ≥ 1, m ≥ 1 and {Nk}Lk=1 ∈ NL be given, with N0 := d and
NL+1 := m.
A neural network with L hidden layers, input dimension d, and output dimension m,
is a parameter-dependent map

fΘ(; ·) : Rd −→ Rm

~x 7−→ (ϕ ◦ ΛL+1 ◦ σ ◦ ΛL ◦ σ ◦ . . . ◦ σ ◦ Λ1) (~x)

where Λk+1~z := Ak~z + bk for all k ∈ {0, . . . , L} and ~z ∈ RNk . The sequence of
matrix-vector pairs

Θ =
{

(Ak, bk)
}L
k=0

where
Ak ∈ RNk+1×Nk and bk ∈ RNk+1 for k ∈ {0, . . . , L}

are parameters, while σ ∈ C0(R) and ϕ ∈ C0(R) are two fixed functions.

Comment: Definition of fL hard to read; can be rewritten equivalently as in Slide 15
below.
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Some comments

Cleaner definition

Consider setting of Slide 14. Given a data point ~xi ∈ Rd and parameters Θ, a neural
network writes as

(2) fΘ(; ~x) = ϕ(ALzL + bL)

where zL = zLi ∈ Rm being given by the scheme

(3)

{
zk+1 = σ(Akzk + bk) for k = 0, . . . , L− 1

z0 = ~xi ∈ Rd.

This works for L ≥ 1. Observe that zk ∈ RNk for k ∈ {0, . . . , L}.

We can thus define a neural network equivalently by means of (??)-(??).
(??) is often called the architecture of the neural network

In principle, we could add different terms in the scheme (??) to obtain other
architectures (Slide 49).

A neural network with L = 1 is called a one hidden layer (or shallow) network.
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Some comments

σ ∈ C0(R) generally as Slide 13 (+monotonically increasing)

ΛL+1 projects data to arrival space Rm, while ϕ can compress it within a desired
interval (usually [0, 1], to interpret as probabilities).

In binary classification (i.e. data {~yi}Ni=1 ∈ {0, 1}N like our red-blue example of
Slide 7), we have ϕ ≡ σ.
In this case, a network with 1 (hidden) layer reads

f(Θ, ·) : ~x 7→ σ(A1σ(A0~x+ b0) + b1).

Otherwise, depends on the application:
for regression, we use ϕ(~x) = ~x, with ~x ∈ Rm (no constraints on arrival set).
for m > 2 colors we use

ϕ(~x) =
1∑m

j=1 exp(xj)


exp(x1)

...
exp(xm)

 ∈ Rm
.

Let us elaborate. We want to classify 3 colors (for instance blue, red and green),
and we have data of the form {~xi}Ni=1 ∈ (Rd)N . The corresponding labels are
{~yi}Ni=1 ∈ (R3)N as we identify an element of the canonical basis {e1, e2, e3} of
R3 with each of the 3 colors. The function ϕ will take the output zL ∈ R3 of the
last hidden layer of the network, and normalizes it into a probability distribution
consisting of 3 probabilities proportional to the exponentials of {zLj }

3
j=1 (i.e.

ϕ(zL) ∈ (0, 1)3). Such ϕ is called softmax.
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"Discrete dynamics" of a single datum

input
(layer 0)

layer 1

layer 2

output
(layer 3)z0

1

z0
2

z1
1

z1
2

z1
3

z1
4

z2
1

z2
2

z2
3

z3
1

R2 7−→ R4 7−→ R3 7−→ R

z0 = ~x σ ◦ Λ1−−−−−→ z1 σ ◦ Λ2−−−−−→ z2 ϕ ◦ Λ3−−−−−→ z3 = fL(~x)

Here L = 2, input d = 2 and output m = 1. Hidden layers are the layers 1 and 2. The width of the
layers j (0 ≤ j ≤ 3) are N0 = 2, N1 = 4, N2 = 3, N3 = 1, and zj = (z

j
1, . . . , z

j
Nj

)ᵀ.
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Example (no hidden layers)

Let L = 0 (zero hidden layers), d = 2 and m = 1. Then

fΘ(, ~x) = ϕ

 2∑
j=1

A0
j xj + b0

 ∈ R

for ~x =

[
x1

x2

]
∈ R2, where A0 = [A0

1 A0
2] ∈ R1×2 (1 row 2 columns) and b0 ∈ R.

input
(layer 0) output

(layer 1)x1

x2

fL

R2 7−→ R

~x ϕ ◦ Λ1−−−−−→ fΘ(, ~x)
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Examples

Let L = 0. Then fΘ(, ~x) = ϕ(A0~x+ b0) for ~x ∈ Rd with A0 ∈ Rm×d and b ∈ Rm.
Recall by convention that

ϕ(A0~x+ b0) :=


ϕ
(∑d

j=1 A
0
1,jxj + b01

)
ϕ
(∑d

j=1 A
0
2,jxj + b02

)
...

ϕ
(∑d

j=1 A
0
m,jxj + b0m

)

 ∈ Rm.
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Example 1: The data

Figure: We consider 4 blue and 8 red data points.

Objective: predict the colors of other points in the interval
−→ separate the interval in a set of blue and a set of red points, using the data.

We consider a (trained) one hidden layer network with one component:

(4) f1(Θ, x) = σ(A1σ(A0x+ b0) + b1) ∈ R for x ∈ R

where (A0, A1, b0, b1) ∈ R are all scalars.

In all examples, σ(x) = 1
1+e−x (see Slide 13).
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Example 1: Steps 1 & 2 - Stretch, then compress

Figure: Step 1: First apply Λ1x = A0xi + b0 ∈ R (dilating and translating) to each xi

Figure: Step 2: Then apply σ to Step 1 to compress in [0, 1] (first try to obtain a separation)
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Example 1: Steps 3 & 4 - Stretch, compress again

Figure: Step 3: Stretch again by Λ1z
1 = A1z1 + b1 ∈ R

Figure: Compress Step 3 by σ.
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Step 5: The final result

Figure: On the right, we have the function which takes any point in the interval and maps to 0
(blue) or 1 (red). On the left, we see its level sets. There was not "enough room" to separate
the points.
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Example 2: Same data, 2 components in layer

1 component in the hidden layer (i.e. A0 ∈ R) doesn’t separate well.

How about 2:

(5) f1(Θ, x) = σ(A1σ(A0x+ b0) + b1) ∈ R for x ∈ R

but now A0 ∈ R2×1, A1 ∈ R1×2, and b0 ∈ R2, b1 ∈ R.

Figure: We consider the same 4 blue and 8 red data points.
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Example 2: Step 1 & 2 - Embed data in R2, then "curb" it

Figure: Embed the data in R2 via Λ1 : R→ R2 as A0 ∈ R2×1; dilates and translates the
points along a diagonal in R2. Applying σ "curbs" the points (nonlinearity and monotonicity is
important here), making it easier to separate by a line.
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Example 2: Separate the data with a line

Figure: We see how the projection x 7→ A1x+ b1 onto R and compression by σ would give
separation (see right). Important part was done in the slide before, as working in R2 means
that we can separate by a line.
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Example 2: Step 3 & 4 - Project and compress

Figure: We project onto R; the angle allows to switch the order.

Figure: Here σ is only used as a compression to remain in [0, 1] (obtain a probability)
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Example 2: The final result

Figure: We see the level sets (left) of the classifier function (right). The function
f1(x) = σ(A1σ(A0x+ b0) + b1) is with values in [0, 1], can be seen as probability
distribution; to obtain clear-cut 0− 1 values, we removed the transition zone.
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Example 3: 3 components in layer

We try adding another component in the hidden layer, i.e. take A0 ∈ R3×1.

Figure: We add a component to the hidden layer. Means that the data will be embedded in R3

after the first linear transformation.
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Example 3: Step 1 - Embed in R3

Figure: The linear transformation stretches the data onto a diagonal line in R3.
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Example 3: Step 2 - Apply σ to curb points

Figure: We apply the nonlinearity σ to each component, to the effect of curbing the data (as
well as compressing within [0, 1]3).
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Example 3: We can separate in R3 with a hyperplane

Figure: The curbed points may be separated by a hyperplane ({x ∈ R3 : σ(A1x+ b1) = 0.5}
in blue), much like the simpler data of Example 2 can be separated by a line. We see this on
the right.
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Example 3: Steps 3 & 4 - Project and compress

Figure: We see that the data is correctly separated after the projection onto R.
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Example 3: Final classifier
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Intuition: billiards and geometrical optics

Augmenting the dimension of the input data is similar to non-intersection
phenomena in geometrical optics. Indeed, rays in a plane (2d) starting from
different points can intersect, while this does not occur in a cylinder (3d).
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Figure: Rays may intercept in 2d (left) but not in 3d (right).
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Universal approximation theorem(s)
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An introduction

Theorems generally of the form: The class of neural networks is dense with
respect to some topology in some function class C.
Interpretation: given f ∈ C and ε > 0, there exists a neural network fL(ε) with
L(ε) > 0 hidden layers, each layer consisting of Nk(ε) components, as well as
parameters Θ(ε), in a way that ‖f − fΘ((ε))‖C < ε;

Sometimes, L > 0 can be fixed too (see Slide 42). Then, more and more
components in the hidden layers are needed to approximate f ;

The theorem does not say what these parameters are, or how to find them. It can
basically be seen as an existence result for neural networks.
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Theorem (Cybenko ’89, MCSS)

Let σ : R→ R be a nonconstant, bounded and continuous function.
Let d ≥ 1 and L = 1.
For any ε > 0 and any f ∈ C0([0, 1]d), there exists N1 ∈ N, coefficients A0 ∈ RN1×d,
A1 ∈ R1×N1 and b0 ∈ RN1 such that

fL(~x) = A1σ(A0~x+ b0)

satisfies
sup

~x∈[0,1]d
|f(~x)− fL(~x)| < ε.

This theorem corresponds to L = 1 (one hidden layer) and ϕ(x) = x (regression)
in Definition Slide 14-15.

Ingredients of the proof: Contradiction argument + Hahn Banach +
Riesz-Representation + properties of σ.

σ(x) = 1
1+e−x fits the assumptions for instance.
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We actually also have the following improved result.

Theorem (Poggio et al. ’17)

Let σ ∈ C∞(R) be bounded and not a polynomial.
Let d ≥ 1 and L = 1.
For any ε > 0 and any f ∈ Cκ([0, 1]d) with κ ≥ 1 there exist coefficients
A0 ∈ RN1×d, A1 ∈ R1×N1 and b0 ∈ RN1 with

N1 = O
(
ε−d/κ

)
such that

fL(~x) = A1σ(A0~x+ b0)

satisfies
sup

~x∈[0,1]d
|f(~x)− fL(~x)| < ε.

Theorem implies that one can use a network with one hidden layer for
approximating Cκ functions. However, in general the number N1 of neurons
needed for a fixed approximation accuracy ε > 0 grows exponen- tially in d, and
so does the number of parameters in A0, A1, b0. This means that the storage
requirement as well as the effort to determine A0, A1, b0 easily exeeds all
reasonable bounds already for moderate dimensions d. Hence, this approach
suffers from the curse of dimensionality.
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More recent results for σ(x) = max(x, 0) include

Theorem (Hanin ’17)

Let d ≥ 1 and let f : [0, 1]d → R be a positive and continuous function with
‖f‖∞ = 1. Then for any ε > 0, there exists a neural network fL with ReLU activation
of depth

L =
2 d!

wf (ε)d

and width maxk Nk ≤ d+ 3 such that

‖f − fL‖∞ ≤ ε.

Here wf : δ 7→ sup{|f(x)− f(y)| : |x− y| ≤ δ} denotes the modulus of continuity of
f .

Improved results for functions f : Rd → Rm can be found in Müller ’20.

Results for other function classes (Lp,Wk,p) exist as well.
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Empirical guidelines

It is true that any (say continuous) function can be approximated arbitrarily close
both by a neural network and a polynomial. True for a lot of constructs
(Galerkin, etc.).

In machine learning one doesn’t really want a function that fits through the data
perfectly (overfitting). Rather, one wants something that fits well, but also
probably works for points that have not been seen yet.

Neural networks are (empirically) best-in-breed at solving a very specific kind of
problem: computing a function f : X → Y given the values of f on a large but
finite subset A ⊂ X. Typically Y (the space of "labels") is finite and small
relative to A.

As it turns out, neural networks can "learn" f so well that they can produce
points in f−1(y)’s near a prescribed x ∈ X, which is why they are good at image
/ language generation4.

4Related to GAN (Generative adversarial networks), see Goodfellow et al. ’16
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Training
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Training (Optimization of parameters)

We are given data {(~xi, ~yi)}Nj=1 ∈ (Rd)N × (Rm)N ;

Training consists in solving the optimization problem:

(6) min
Θ={(Ak,bk)}L

k=0

N∑
i=1

|~yi − fΘ(; ~xi)|2 + εR(Θ);

ε > 0 is a penalization/regularisation parameter, R convex;

Non-convex optimization problem because of fL;

Existence of a minimizer may be shown by a direct method (σ ∈ C0);

Once training is done:

Minimizer Θ̂; if {~yi}Ni=1 ∈ {0, 1}N (classification), we set

F (~x) := 1{fL(Θ̂;·)≥ 1
2}

(~x) ∀~x ∈ Rd

and we are done. Otherwise F (~x) := fL(Θ̂, ~x) (regression).
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Computing the minimizer

The functional to be minimized is of the form

(7) J(Θ) =
N∑
i=1

Ji(Θ).

We could do gradient descent:

Θn+1 := Θn − η∇J(Θn),

η is step-size. But often N � 1 (N = 103 or more).
Stochastic gradient descent (Robbins-Monro 50s, Bottou et al, SIREV ’18):

1 pick i ∈ {1, . . . , N} uniformly at random
2 Θn+1 := Θn − η∇Ji(Θn)

Mini-batch GD can also be considered (pick a subset of data instead of just one
point)

Use chain rule and adjoints to compute these gradients ("backpropagation")

Issues: might not converge to global minimizer; also how does one initialize the
weights in the iteration (usually done at random)?
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A discretized dynamical system

Recall that for a set of parameters Θ = {(Ak, bk)}Lk=0 the neural network writes as

fΘ(; ~x) := ϕ(ΛL+1 ◦ σ ◦ ΛL ◦ σ . . . ◦ σ ◦ Λ1)(~x)= ϕ(ALzL + bL)

where for ~x ∈ Rd,

(8)

{
zk+1 = σ(Akzk + bk) for k = 0, . . . , L− 1

z0 = ~x

We recognize a discrete-time dynamical system;

Training can thus be rewritten as a constrained optimization problem:

min
Θ={(Ak,bk)}L

k=0

N∑
i=1

|~yi − ϕ(ALzL + bL)|2 + εR(Θ)

with zL = zL(Θ, ~xi), subject to (??) with z0 = ~xi.

In this case, deep learning may be seen as discretized optimal control (the
parameters Θ play the role of controls).
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Residual Neural Networks (ResNets)

Back to neural networks. Let L ≥ 1 (at least 1 hidden layer).
A different architecture (Weinan E et al. ’18): given any datum ~xi ∈ Rd for some
i = 1, . . . , N ,

(9)

{
zk+1 = zk + ∆t σ(Akzk + bk) for k = 0, . . . L− 1

z0 = ~xi ∈ Rd,

with ∆t = T
L−1

and T > 0 given time horizon.

requires same widths Nk at each layer k ∈ {0, . . . , L}, but we can extend the
data by 0.

Recognize explicit Euler scheme for ODE

(10)

{
z′(t) = σ(A(t)z(t) + b(t)) for t ∈ (0, T )

z(0) = ~xi ∈ Rd.

z(t) = zi(t), but A, b should be independent of the data.

Universal approximation theorems exist also for ResNet architectures (see Lin &
Jegelka ’18)
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The continuous Optimal Control Problem

Can be advantageous to consider the continuous-time optimal control problem:

(11) inf
u(t)∈U, (α,β)

N∑
i=1

|~yi − ϕ(α z(T ) + β)|2 + εR(u)

where z = zi solves

(12)

{
z′(t) = F (u(t), z(t)) in (0, T )

z(0) = ~xi ∈ Rd.

Recall that often ϕ ≡ σ (classification) or ϕ(x) = x (regression).

u(t) = (A(t), b(t)) ∈ (Rd×d × Rd)2 and F (u(t), z(t)) = σ(A(t)z(t) + b(t)).

σ ∈ Lip(R) ; existence of a minimizer see Trélat ’05; here
U ⊂ L∞(0, T ; (Rd×d × Rd)2)

Easier to write optimality system (Weinan E et al. ’18); we can use different
algorithms for training (shooting method);

Other schemes (Runge-Kutta) for time-discretization to obtain new architectures
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Visualisation

Figure: We see that the trajectories of the dynamical system z′i(t) = σ(A(t)zi(t) + b(t)) with
zi(0) = [xi, 0] separate the points xi.
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Visualisation

Figure: We see that the trajectories of the dynamical system z′i(t) = σ(A(t)zi(t) + b(t)) with
zi(0) = [xi, 0] separate the points xi. Here we ran the optimisation simulation on the same
dataset.
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Visualising the test error

Figure: We ran the simulation for solving the optimisation problem 10 times on the same
dataset as previous slide. The left figures are the losses in each run, with the mean shown in
bold. On the right, we see the mean in bold, and the deviation is shaded. In blue, we have the
ResNet neural network, while in green we solve the continuous ODEs with Runge-Kutta.
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Discrete-time dynamical systems: A trick

Recall again that for parameters Θ = {(Ak, bk)}Lk=0 the neural network writes5

fΘ(; ~x) := ϕ(ΛL+1 ◦ σ ◦ ΛL ◦ σ . . . ◦ σ ◦ Λ2 ◦ σ ◦ Λ1)(~x).

We can also (in addition to Slide 49) write fΘ(; ~x) = ϕ(zL), where now

(13)

{
zk+1 = Ak+1σ(zk) + bk+1 for k = 0, . . . , L− 1

z0 = A0~x+ b0

When L� 1, WLOG6 assume b0 = 0 and A0 = E : Rd → RN1 fixed embedding map.
Then relabel the parameters Θ by shifting the indexes k ← k + 1 and write

(14)

{
zk+1 = Akσ(zk) + bk for k = 0, . . . , L− 1

z0 = E~x.

5Recall that Λk+1z = Akz + bk ∈ RNk+1 for z ∈ RNk and k ∈ {0, . . . , L}.
6If L� 1, we can choose to optimize the parameters Ak at a later hidden layer, not necessarily at

the first one.
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ResNets: Reformulation

Let {(~xi, ~yi)}Ni=1 ∈ (Rd)N × (Rm)N be given training data. Let m > 1.
Now assume that Nk = m for all k ∈ {1, . . . , L+ 1}. We can consider

(15)

z
k+1 = zk + ∆t

(
Akσ(zk) + bk

)
for k = 0, . . . , L− 1

z0 = E~xi ∈ Rm

for all i, where ∆t = T
L−1

with T > 0 fixed.

Can be seen as discretization of ODE: z = zi(t) solves

(16)

{
z′(t) = A(t)σ(z(t)) + b(t) in (0, T )

z(0) = E~xi

for all i ∈ {1, . . . , N}. Here A(t) ∈ Rm×m and b(t) ∈ Rm are the controls.

Compared to (??), (??) is an affine-control system (perhaps easier for theoretical
purposes).

"Controllability": for N ∈ N, find A(t), b(t) such that ϕ(zi(T )) = ~yi for all
i ∈ {1, . . . , N}, where zi solves (??).
If ϕ(x) = x, we can try to apply Chow-Rashevski theorem (Iterated Lie brackets).
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ResNets: Reformulation

Associated ResNet: assume that Nk = m for all k ∈ {1, . . . , L+ 1}. We can consider

(17)

z
k+1 = zk + ∆t

(
Akσ(zk) + bk

)
for k = 0, . . . , L− 1

z0 = E~xi ∈ Rm

for all i, where ∆t = T
L−1

with T > 0 fixed.
Now

Can be seen as discretization of ODE: z = zi(t) solves{
z′(t) = A(t)σ(z(t)) + b(t) in (0, T )

z(0) = E~xi

for all i ∈ {1, . . . , N}. Here A(t) ∈ Rm×m and b(t) ∈ Rm are the controls.
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ResNets: Controllability

Cuchiero, Larsson, Teichman ’19 consider a simplified system

(18)


z′(t) =

5∑
j=1

uj(t) vj(z(t)) in (0, T )

z(0) = E~xi ∈ Ω ⊂ Rm

vj(·) ∈ C∞(Rm,Rm) are polynomial fields at most of order 2; controls uj(t) are
scalars.

They prove Objective for (??) using (Ch-Ra) for stacked system satisfied by
{zi}Ni=1

Theorem (Chow-Rashevski)

Let Ω ⊂ Rm be bounded domain, and assume v1, . . . , v5 satisfy the Hörmander
condition

Lie(v1, . . . , v5)(x) = Rm

for all x ∈ Ω. Then, (??) is exactly controllable (in usual sense).

Lie algebra evaluated at x:

Lie(v1, . . . , v5)(x) := {W (x) : W ∈ span{v1, . . . v5 and all iterated Lie brackets}}

Lie bracket: [u, v](x) = v′u− u′v for u, v ∈ C∞(Rm,Rm) (v′ and u′ Jacobians).
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How to quantify generalization?

Let training data {~xi, ~yi}Ni=1 be samples of some unknown probability
distribution p; fΘ trained neural net
Empirical risk (training error): RN [fΘ] = 1

N

∑N
i=1 `(fΘ(~xi), ~yi)

Expected risk (non-sampled error):

R[fΘ] = Ex,y∼p[`(fΘ(x), y)]

(non-computable since p unknown)
Goal: minimize expected risk. Possible approach: bound

generalization gap := RN [fΘ]−R[fΘ]

by O((L/N)α), α > 0, L is number of hidden layers.

Generalization is not well understood for deep neural nets.
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Questions and perspectives
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Many questions persist:

How can one quantify/describe the stability of the deep learning process with
respect to perturbations in the data?

What about the choice of the activation function σ?

How does one best choose the widths Nk of the neural network w.r.t. the data?

What mathematical control results does one transfer to deep learning (e.g. Lie
brackets)?

Other architectures were not presented (e.g. Convolutional Neural Networks)
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