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Free boundary problems



Free boundary problems

» Unknowns are the state and a part of the boundary

» The (transient) prototype: one-phase Stefan problem

T, — T =f for t >0, 0 < x < s(t)
s'(t) = —=Tx(s(t), t) fort >0
T(0,t)=T(s(t),t)=0 fort>0

T(x,0) = To(x) for 0 < x < s,

where (T, s) are unknown, while sp > 0 and (f, Tp) are given

» Model for the melting of a block of ice inside a container filled with
water

» The Stefan condition describes the motion of the melting interface.
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Figure: T is the temperature and s is the melting front. In our case,
gc, Tm =0.



Control of parabolic problems



Basics on parabolic equations

» The canonical example is the heat equation

ye—Ay=1f1, in(0,T)xQ
y=0 on (0, T) x 0Q (1)
Y=Y in £,

where Q € R? is a bounded domain with C2 boundary, w C , 1 is
the indicator function, and (f, yp) are given

» Smoothing effect: f1, =0o0n Q\w = y(t, ) € C*(Q\ w) for
t >0, even if yp € L?(Q).



Controllability of the heat equation

There are multiple concepts of controllability, the "basic” one being

Definition (Exact controllability at time T > 0)

For any yo, y1 € L?(), there exists f € L?((0, T) x Q) such that the
solution y to (1) satisfies

‘)’(T,X) =y (x) forxe Q.‘
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Controllability of the heat equation

There are multiple concepts of controllability, the " basic” one being

Definition (Exact controllability at time T > 0)

For any yo, y1 € L?(), there exists f € L?((0, T) x Q) such that the
solution y to (1) satisfies

‘)’(T,X) =y (x) forxe Q.‘

A few remarks are in order:
> Smoothing effect = if w # Q, then (1) is not exactly controllable.

» Can we steer y to specific targets, such as y; = 07 This is the
problem of null-controllability.



Null-controllability of the heat equation

Hilbert Uniqueness Method: null-controllability at time T > 0 is
equivalent to: 3C = C(T) > 0 such that for all " € L?(Q),

.
/\(p(x,O)|2dx < c/ /|<p(x, £)Pdxdt,
Q 0 w

where @ is the solution to the adjoint problem

or+Ap=0 in(0,T)xQ
=0 on (0, T) x 0Q
o(T,)=¢" inQ.
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Hilbert Uniqueness Method: null-controllability at time T > 0 is
equivalent to: 3C = C(T) > 0 such that for all " € L?(Q),

.
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where @ is the solution to the adjoint problem

or+Ap=0 in(0,T)xQ
=0 on (0, T) x 0Q
o(T,)=¢" inQ.

This is called an observability inequality, and we say that the adjoint
problem is (final-state) observable.



Null-controllability of the heat equation

How to prove the observability inequality?

» Fourier techniques: if eigenvalues {Ax}xen known, roughly check if
Aiy1 — Mg > 0 for all k € N (biorthogonals of Fattorini & Russell
70s)

» Carleman inequalities (Fursikov-Imanuvilov '96, Lebeau-Robbiano
'95, Zuazua-Fdez Cara '00)

Remark: Distributed = boundary null-controllability (observability) for

parabolic problems.

Other ways for proving controllability include flatness techniques® and
characterization of the reachable space of the heat equation?, or
tranmutation techniques®.

2Rouchon, Rosier et al. 2010s
3Tucsnak et al., JEMS '18
“Miller JFA '05, Ervedoza-E.Z. ARMA '11



Null-control of the Stefan problem

E.Férnandez-Cara et al. (2016): null-controllability roughly by means of
the scheme:

Fix s € C1(]0, T]), and consider

Vi — Yux = 1, for t > 0, O<X<S(t)
y(0,t) = y(s(t),t) =0 fort>0 (2)
y(x,0) = yo(x) for 0 < x < sg.

Notice that we have removed the Stefan condition.
Prove that (2) is null-controllable: HUM + Carleman inequality.

Transfer this knowledge to the free boundary problem by means of a
Schauder fixed-point theorem applied to the map

/\:s(t)l—>so—/0 ye(s(), 7)dr.



A different strategy5

Liu, Takahashi and Tucsnak, COCV '13: null-controllability for

Vi — Vix + W =0 fort >0, x € (—1,1)\ {h(t)}
v(=1,t)=0,v(1,t) =u(t) fort>0

K (t) = v(h(t), 1) fort >0

H'(t) = [w](h(t), t) for t >0

hO) = o, H(0) = hi.

v(x,0) = w(x), for x € (=1,1)\ {ho}.

v

Model for the motion of a single particle in a viscous fluid occupying
the pipe (—1,1)

v represents the fluid velocity and h the position of the particle
Null-controllability result includes h(T) =0, H'(T) = 0.
Control acts only on one boundary.

v

v

v

5Used in control by Imanuvilov-Takahashi JMPA '08, Tucsnak et al. '13, '14,
Geshkovski & E.Z. '19 for control of both PDE and ODE.



For t > 0, change of variable to fix the domain

n(,t) - (=L 1)\ {h(t)} = (-1,1) \ {0}

yielding a nonlinear problem written in Cauchy-form

2(t) = Az(t) + Bi(t) + N ;
H(t) = Cz(t)

z(0) = z

h(0) = ho.

Consider the linear problem: replace N {Z] by f

Prove null-control. of the linear problem with ¥ = 0 using parabolic
techniques

Transfer null-control. result to problem with f # 0 if f has decay
properties (called source term method)

N is a contraction = Banach'’s fixed-point.



Asymptotics



Asymptotics

Fix domain + Hadamard linearization + Banach Fixed point is standard
strategy for analysis of free boundary problems in strong form®:

Up — Uy + Uty =0 for t >0, x e R\ {h(t)}

K (t) = u(h(t),t) fort >0

H'(t) = [ux](h(t), t) fort >0 (3)
h(0) = ho, H'(0) = hy,

u(x,0) = up(x), for x € R\ {ho}.

What is the asymptotic behaviour of (3)? Scaling arguments.

%Vazquez-EZ, Comm PDE '03 M3AS '05, Otto et al. JDE '08, Masmoudi et al.
ARMA '15



Theorem (Vazquez-E.Z. '03)
Let up € L>(R) N LY(R) and hy, hy € R. Then

(P2 u(t) — ()l 0 as t oo )

for all 1 < p < oo where ii(x, t) = t—1/2fy(x/\/t) is the self-similar
solution of Burgers' with mass M given by M = fR uo(x)dx + hy.
Question: Can we locate the asymptotic position h(t) and velocity h'(t)
of the particle?



Theorem (Vazquez-E.Z. '03)
Under the conditions in the above theorem, if M > 0 then

t72|h(t) — cvVt| -0 as t— oo
where ¢ > 0 is uniquely determined by the equation fiy(c) = c/2.
Moreover, we have a precise estimate of the particle speed:

c

t1/2|h/(t)
2/t

| =0 as t— oo.
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